Mathematics

INDIAN SCHOOL AL WADI AL KABIR

Class XII (2025-26)

Mathematics Worksheet 2 - Inverse Trigonometric Functions

The domain of the function $f(x) = \sin^{-1}(x) + \sec^{-1}(x)$

-1 and 1

В

[-1, 1] C

R

D

R-(-1,1)

2. If $\sec^{-1}(-x) = \frac{\pi}{8}$, which of the following is $\sec^{-1}(x)$?

A $-\frac{\pi}{8}$ B $\frac{9\pi}{8}$ C $\frac{7\pi}{8}$ D cannot be determined

3. $\sin^{-1}\left(\frac{2^{x+1}}{1+4^x}\right) = ?$

A $tan^{-1}(2)$ B $2tan^{-1}(x)$ C $tan^{-1}(2^x)$ D $2tan^{-1}(2^x)$

The value of $2\cos^{-1}\frac{1}{2} + 3\sin^{-1}\frac{1}{2}$ is

 $\mathbf{A} \qquad \frac{7\pi}{6} \qquad \mathbf{B} \quad 0$

 $C \qquad \frac{3\pi}{4} \qquad \mathbf{D}$

 $sin[cot^{-1}\{cos(tan^{-1}x)\}] =$

A
$$\frac{x}{\sqrt{x^2+1}}$$
 B $\frac{1}{\sqrt{x^2+1}}$ C $\sqrt{\frac{x^2+1}{x^2+2}}$ D $\frac{1}{\sqrt{x^2+2}}$

6. $\cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}(\sin\frac{2\pi}{3}) =$

π

7. $sin\left(2cos^{-1}\left(-\frac{3}{5}\right)\right)$: $\mathbf{A} \qquad -\frac{3}{5} \quad \mathbf{B}$

 $\frac{24}{25}$ C $-\frac{24}{25}$

D

8. $\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \tan^{-1}(-1) =$

A $\frac{\pi}{12}$ B $\frac{5\pi}{12}$ C $\frac{19\pi}{12}$

D

9. $Sec^2(tan^{-1}2) + cosec^2(cot^{-1}3)$:

15 **B**

11 **C**

13

D

 $tan\left(\frac{\pi}{4} + \frac{1}{2}cos^{-1}\frac{a}{h}\right) + tan\left(\frac{\pi}{4} - \frac{1}{2}cos^{-1}\frac{a}{h}\right)$:

A $\frac{2a}{b}$ B $\frac{b}{2a}$ C $\frac{2b}{a}$

D

DIRECTION: In question number 11, a statement of **Assertion (A)** is followed by a statement of **Reason (R)**.

Choose the correct option.

- (A)Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).
- (C) Assertion (A) is true but Reason (R) is false.
- (D) Assertion (A) is false but Reason (R) is true.
- 11. (A) $Cos^{-1}(1) = \pi$
 - (R) $f(x) = \cos x$, f: R to R is neither one to one nor onto.
- 12. (A) Domain of $\sin^{-1}(2x-1)$ is [0, 1]
 - (R) Domain of $\sin^{-1}(x)$ is [-1, 1]
- 13. (A) $\sin^{-1}\left(\sin\frac{3\pi}{4}\right) = \frac{\pi}{4}$ (R) $\sin^{-1}(\sin x) = x$.

Very Short Answer Questions (2 marks)

- 14. Simplify: $tan^{-1} \left(\frac{cosx}{1 sinx} \right)$.
- 15. Find the domain of $\cos^{-1}(x^2 4)$.
- 16. Sketch the graph of cos⁻¹x from [-1, 1] to its principal value branch.
- 17. Simplify: $tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$.
- 18. Evaluate: $sin^{-1}\left(sin\frac{2\pi}{3}\right) + cos^{-1}\left(cos\frac{2\pi}{3}\right) + tan^{-1}\left(tan\frac{2\pi}{3}\right)$.
- 19. Solve for x: $tan^{-1}\left(\frac{cosx-sinx}{cosx+sinx}\right) = \frac{\pi}{8}$
- 20. Case study Based Question: If a function f: X to Y defined as f(x) = y is one-one and onto, then we can define a unique function g: Y to X such that g(y) = x, where $x \in X$ and y = f(x), $y \in Y$. Function g is called the inverse of function f. The domain of sine function is R and function sine: R to R is neither one-one nor onto. The following graph shows the sine function.

Let sine function be defined from set A to [-1, 1] such that inverse of sine function exists, i.e., $\sin^{-1} x$ is defined from [-1, 1] to A.

On the basis of the above information, answer the following questions:

- i) If A is the interval other than principal value branch, give an example of one such interval.
- ii) If $\sin^{-1}(x)$ is defined from [-1, 1] to its principal value branch, find the value of $\sin^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}(1)$.
- iii) Find the domain and range of $f(x) = 2 \sin^{-1} (1 x)$.
- iv) Sketch the graph of sin⁻¹x from [-1, 1] to its principal value branch.

INDIAN SCHOOL AL WADI AL KABIR

Class XII (2025-26)

Mathematics Worksheet 2 – Inverse Trigonometric Functions

Answer Key

		Allswei Rey					
1.	A	2.	В	3.	D	4.	D
5.	A	6.	D	7.	С	8.	В
9.	A	10	С	11.	D	12	A
13.	С	14.	$\frac{\pi}{4} + \frac{x}{2}$	15	$[-\sqrt{5}, -\sqrt{3}] \cup [\sqrt{3}, \sqrt{5}]$	17	$\frac{1}{2}tan^{-1}x$
18	$\frac{2\pi}{3}$	19	$\frac{\pi}{4}$	20	i) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ ii	$(\frac{\pi}{3})$ iii	$(0,2] to [-\pi,\pi]$